العمليات على الفاصلة العائمة
فيما يلي سوف نتحدث بشئ من التفصيل عن عمليتي الجمع والضرب لعددين ممثلين باستخدام الفاصلة العائمة. ولكن قبل ذلك لا بد أن نتذكر كيف يتم تمثيل الأعداد باستخدام الفاصلة العائمة، وهو بالتأكيد ليس موضوع بحثنا. هناك طريقتين لتمثيل الأعداد باستخدام الفاصلة العائمة:
[عدل] تمثيل الأعداد بطريقة الفاصلة العائمة
[عدل] الصيغة وحيدة الدقة
حيث يخصص 23بت للقسم الكسري و8بت للقوة البت الأخير للاشارة. وبشكل عام يكون للأعداد الممثلة بالفاصلة العائمة وبهذه الطريقة الصيغة التالية: (-1)^s*(1+signification)*2^(E+127)
[عدل] الصيغة مضاعفة الدقة
حيث يخصص 23 بت للقسم الكسري و11 بت للقوة والبت الأخير للاشارة. وبشكل عام يكون للأعداد الممثلة بالفاصلة العائمة وبهذه الطريقة الصيغة التالية: (-1)^s*(1+signification)*2^(E+1023)
مثال: العدد (-0.75) يتم تمثيله باستخدام طريقتي تمثيل الفاصلة العائمة: 1-باستخدام الصيغة وحيدة الدقة: (0.75)10=(0.11)2=1.1*2^-1 (-1)^1*(1+0.1)*2^(-1+127)=(-1)^1*(1.1)*2*126 وبالتالي يكون توزع البيتات:
0000 0000 0000 0000 0000 0100 1111 1011
____ ____ ____ ____ ____ ____ ____ ____
0 0 0 0 0 4 B F
ومنه فان (-0.75)=BF400000:
باستخدام الصيغة مضاعفة الدقة:
(0.75)10=(0.11)2=1.1*2^-1 (-1)^1*(1+0.1)*2^(-1+1023)=(-1)*(1.1)*(1022)
0000 0000 .....0000 0000 0000 0000 0000 1000 1110 1111 1011
____ ____......____ ____ ____ ____ ____ ____ ____ ____ ____
0 0 0 0 0 0 0 8 B F E
ومن فان(-0.75)=BFE8000000000000
[عدل] جمع الأعداد الممثلة بطريقة الفاصلة العائمة
لنقم بجمع عددين عشريين ممثلين بطريقة الفاصلة العائمة وذلك من أجل توضيح المشاكل التي من الممكن مصادفتها أثناء عملية الجمع. بفرض لدينا العددين :+(1.610*10^-1) (9.999*10^1) وبفرض أننا نستطيع أن نخزن أربع خانات عشرية فقط في القسم الكسري وخانتين عشريتين فقط في القوة.
1-الخطوة الأولى:
حتى نستطيع أن نقوم بجمع هذين العددين يجب أن نرتب الفاصلة العشرية في العدد الأصغر أي يجب أن نجعل العدد الأصغر على الشكل 1.610*10^-1 وذلك بشكل مماثل للقوة في العدد الأكبر.ويمكن أن نحقق ذلك بالاستفادة من التمثيل المتعدد للرقم بواسطة الفاصلة العائمة :
0.610*10^-1=0.1610*10^0=0.01610*10^1 حيث تمثل الصيغة على اليمين الصيغة المطلوبة (قوة العدد الأصغر أصبحت مماثلة لقوة العدد الأكبر)وبالايجاز يمكن إنجاز ذلك بإزاحة القسم الكسري للعدد الأصغر إلى اليمين وتعديل القوة حتى تصبح مساوية لقوة العدد الأكبر. 0.016*10^1 طبعا" مع الملاحظة أنه لا يمكن السماح بأكثر من أربع خانات عشرية في القسم الكسري مما يستدعي إهمال بعض الخانات على يمين الفاصلة.
- الخطوة الثانية:
وهي تتمثل بجمع القسم الكسري للعددين
9.999
+ 0.016
_____
10.015 وبالتالي يكون ناتج الجمع(0.015*10^1)
3-الخطوة الثالثة:
إن الناتج الذي حصلنا غير مكتوب بالصيغة القياسية (الصيغة القياسية تتضمن رقم واحد فقط بعد الفاصلة)لذلك الناتج بحاجة إلى عملية تصحيح.باستخدام التمثيل المتعدد للرقم في الفاصلة العائمة: 10.015*10^1=1.0015*10^2 وهكذا تم العدة الناتج إلى الصيغة القياسية مع ملاحظة ملاءمته للقوة. إن هذا المثال يظهر عملية إزاحة الناتج نحو اليمين .ولكن ماذا إذا كان أحد العددين موجب والأخر سالب في هذه الحالة من الممكن أن يكون ناتج الجمع مساويا" للصفر وهذا يتطلب إزاحة الناتج نحو اليسار على أي حال القوة سواء بالزيادة أو النقصان يجب إجراء عملية فحص للتأكد فيما لذا كان هناك overflow أو underflow أي يجب أن نكون متأكدين أن القوة لا تزال ضمن الحقل (أي ضمن المجال المسموح به).
- الخطوة الرابعة:
في بداية المسألة افترضنا أن القسم الكسري يمكن أن يستوعب فقط أربع خانات عشرية لذلك يجب إجراء عملية تدوير للعدد وذلك باستخدام قواعد التدوير (التقريب) . فمن أجل تقريب عدد ما:إذا كان الرقم على يمين النقطة المرغوبة يقع ما بين 0__4 فإننا نحذف كل الخانات على يمين هذه النقطة وآلا إذا كان الرقم محصور بين 5__9 فأننا نضيف 1 إلى الرقم الذي يليه. العدد 1.0015*10^2 يتم تدويره بحيث يتضمن أربع خانات عشرية فقط في القسم الكسري وبذلك يصبح 1.002*10^2 حيث أن الخانة على اليمين تقع بين 5 و 9 ....
ملاحظة :
إن عملية التدوير يمكن أن تتم قبل أو بعد التحويل إلى الصيغة القياسية ولكن الأفضل هو بعد عملية التحويل. خوارزمية جمع عددين باستخدام الفاصلة العائمة: الشكل (1) يظهر خوارزمية جمع عددين ثنائيين ممثلين باستخدام الفاصلة العائمة كما تمت المناقشة في المثال السابق حيث تمت في الخطوة الأولى والثانية تسوية العدد الأصغر وجمعه مع العدد الأكبر وفي الخطوة الثالثة تم إعادة الناتج إلى الصيغة القياسية .اختبار ال overflow أو underflow في الخطوة الثالثة يعتمد على دقة المعاملات هذا يعني بالنسبة لدقة الإشارة أن أعظم قوة هي 127 وأن أصغر قوة هي -126 ففي الصيغة مضاعفة الدقة يكون مجال القوة محصورا" بين 1023__-1022.
أمثلة حول عملية الجمع:
مثال (1):
اجمع العددين التاليين: 0.5 و -0.4375 وذلك باستخدام الفاصلة العائمة . الحل: قبل البدء بعملية الجمع يجب تمثيل العددين باستخدام الفاصلة العائمة كالتالي : (0.5)=1.000*2^-1 -0.4375)=-1.110*2^-2) 1-التعديل يطبق على العدد الثاني حيث يتم ازاحة قسمه الكسري نحو اليمين حتى تصبح قوته مساوية لقوة العدد الأكبر : -1.110*2^-2=-0.111*2^-1
2-عملية جمع القسم الكسري للعددين :
1.000*2^-1)+(-0.111*2^-1)=0.001*2^-1) 3-أعادة الناتج للصيغة القياسية مع فحص حالة overflow و underflow 0.001*2^-1=0.010*2*-2=0.100*2^-3=1.000*2*- حيث>= -1 127 >= -4 أي لا يوجد هناك overflow . 4-عملية تدوير الناتج: نلاحظ أن الناتج لا يحتاج إلى تدوير.
مثال(2):
أوجد ناتج جمع العددين التاليين 1575*10^13: و 503*10^5 مع العلم أن المسموح به هو رقمين عشريين فقط بعد الفاصلة .
الحل: بتطبيق الخوارزمية السابقة بشكل مباشر: 1-15.75*10^5 + 503*10^5 2-(15.75 + 503) * 10^5 = 518.75 *10^5 3- نلاحظ أن الناتج لا يحتاج إلى عملية إزاحة. 4- الناتج لا يحتاج إلى عملية تدوير.
مثال (3):
أوجد ناتج جمع العددين التاليين : 13 و 33 وذلك بفرض أن المسموح به هو خمس أرقام فقط بعد الفاصلة.
الحل: يجب قبل البدء بعملية الجمع لا بد من تمثيل العددين بطريقة الفاصلة العائمة.
(13)10 = (1101)2 = 1.101 * 2^3
(33)10 = (100001)2 = 1.00001 * 2^5
بتطبيق خوارزمية الجمع مباشرة . 1- 13 = 0.01101 * 2^5 2- 13 : 0.01101 * 2^5
33 : 1.00001 * 2^5
____________
1.01101 * 2^5
فيما يلي سوف نتحدث بشئ من التفصيل عن عمليتي الجمع والضرب لعددين ممثلين باستخدام الفاصلة العائمة. ولكن قبل ذلك لا بد أن نتذكر كيف يتم تمثيل الأعداد باستخدام الفاصلة العائمة، وهو بالتأكيد ليس موضوع بحثنا. هناك طريقتين لتمثيل الأعداد باستخدام الفاصلة العائمة:
[عدل] تمثيل الأعداد بطريقة الفاصلة العائمة
[عدل] الصيغة وحيدة الدقة
حيث يخصص 23بت للقسم الكسري و8بت للقوة البت الأخير للاشارة. وبشكل عام يكون للأعداد الممثلة بالفاصلة العائمة وبهذه الطريقة الصيغة التالية: (-1)^s*(1+signification)*2^(E+127)
[عدل] الصيغة مضاعفة الدقة
حيث يخصص 23 بت للقسم الكسري و11 بت للقوة والبت الأخير للاشارة. وبشكل عام يكون للأعداد الممثلة بالفاصلة العائمة وبهذه الطريقة الصيغة التالية: (-1)^s*(1+signification)*2^(E+1023)
مثال: العدد (-0.75) يتم تمثيله باستخدام طريقتي تمثيل الفاصلة العائمة: 1-باستخدام الصيغة وحيدة الدقة: (0.75)10=(0.11)2=1.1*2^-1 (-1)^1*(1+0.1)*2^(-1+127)=(-1)^1*(1.1)*2*126 وبالتالي يكون توزع البيتات:
0000 0000 0000 0000 0000 0100 1111 1011
____ ____ ____ ____ ____ ____ ____ ____
0 0 0 0 0 4 B F
ومنه فان (-0.75)=BF400000:
باستخدام الصيغة مضاعفة الدقة:
(0.75)10=(0.11)2=1.1*2^-1 (-1)^1*(1+0.1)*2^(-1+1023)=(-1)*(1.1)*(1022)
0000 0000 .....0000 0000 0000 0000 0000 1000 1110 1111 1011
____ ____......____ ____ ____ ____ ____ ____ ____ ____ ____
0 0 0 0 0 0 0 8 B F E
ومن فان(-0.75)=BFE8000000000000
[عدل] جمع الأعداد الممثلة بطريقة الفاصلة العائمة
لنقم بجمع عددين عشريين ممثلين بطريقة الفاصلة العائمة وذلك من أجل توضيح المشاكل التي من الممكن مصادفتها أثناء عملية الجمع. بفرض لدينا العددين :+(1.610*10^-1) (9.999*10^1) وبفرض أننا نستطيع أن نخزن أربع خانات عشرية فقط في القسم الكسري وخانتين عشريتين فقط في القوة.
1-الخطوة الأولى:
حتى نستطيع أن نقوم بجمع هذين العددين يجب أن نرتب الفاصلة العشرية في العدد الأصغر أي يجب أن نجعل العدد الأصغر على الشكل 1.610*10^-1 وذلك بشكل مماثل للقوة في العدد الأكبر.ويمكن أن نحقق ذلك بالاستفادة من التمثيل المتعدد للرقم بواسطة الفاصلة العائمة :
0.610*10^-1=0.1610*10^0=0.01610*10^1 حيث تمثل الصيغة على اليمين الصيغة المطلوبة (قوة العدد الأصغر أصبحت مماثلة لقوة العدد الأكبر)وبالايجاز يمكن إنجاز ذلك بإزاحة القسم الكسري للعدد الأصغر إلى اليمين وتعديل القوة حتى تصبح مساوية لقوة العدد الأكبر. 0.016*10^1 طبعا" مع الملاحظة أنه لا يمكن السماح بأكثر من أربع خانات عشرية في القسم الكسري مما يستدعي إهمال بعض الخانات على يمين الفاصلة.
- الخطوة الثانية:
وهي تتمثل بجمع القسم الكسري للعددين
9.999
+ 0.016
_____
10.015 وبالتالي يكون ناتج الجمع(0.015*10^1)
3-الخطوة الثالثة:
إن الناتج الذي حصلنا غير مكتوب بالصيغة القياسية (الصيغة القياسية تتضمن رقم واحد فقط بعد الفاصلة)لذلك الناتج بحاجة إلى عملية تصحيح.باستخدام التمثيل المتعدد للرقم في الفاصلة العائمة: 10.015*10^1=1.0015*10^2 وهكذا تم العدة الناتج إلى الصيغة القياسية مع ملاحظة ملاءمته للقوة. إن هذا المثال يظهر عملية إزاحة الناتج نحو اليمين .ولكن ماذا إذا كان أحد العددين موجب والأخر سالب في هذه الحالة من الممكن أن يكون ناتج الجمع مساويا" للصفر وهذا يتطلب إزاحة الناتج نحو اليسار على أي حال القوة سواء بالزيادة أو النقصان يجب إجراء عملية فحص للتأكد فيما لذا كان هناك overflow أو underflow أي يجب أن نكون متأكدين أن القوة لا تزال ضمن الحقل (أي ضمن المجال المسموح به).
- الخطوة الرابعة:
في بداية المسألة افترضنا أن القسم الكسري يمكن أن يستوعب فقط أربع خانات عشرية لذلك يجب إجراء عملية تدوير للعدد وذلك باستخدام قواعد التدوير (التقريب) . فمن أجل تقريب عدد ما:إذا كان الرقم على يمين النقطة المرغوبة يقع ما بين 0__4 فإننا نحذف كل الخانات على يمين هذه النقطة وآلا إذا كان الرقم محصور بين 5__9 فأننا نضيف 1 إلى الرقم الذي يليه. العدد 1.0015*10^2 يتم تدويره بحيث يتضمن أربع خانات عشرية فقط في القسم الكسري وبذلك يصبح 1.002*10^2 حيث أن الخانة على اليمين تقع بين 5 و 9 ....
ملاحظة :
إن عملية التدوير يمكن أن تتم قبل أو بعد التحويل إلى الصيغة القياسية ولكن الأفضل هو بعد عملية التحويل. خوارزمية جمع عددين باستخدام الفاصلة العائمة: الشكل (1) يظهر خوارزمية جمع عددين ثنائيين ممثلين باستخدام الفاصلة العائمة كما تمت المناقشة في المثال السابق حيث تمت في الخطوة الأولى والثانية تسوية العدد الأصغر وجمعه مع العدد الأكبر وفي الخطوة الثالثة تم إعادة الناتج إلى الصيغة القياسية .اختبار ال overflow أو underflow في الخطوة الثالثة يعتمد على دقة المعاملات هذا يعني بالنسبة لدقة الإشارة أن أعظم قوة هي 127 وأن أصغر قوة هي -126 ففي الصيغة مضاعفة الدقة يكون مجال القوة محصورا" بين 1023__-1022.
أمثلة حول عملية الجمع:
مثال (1):
اجمع العددين التاليين: 0.5 و -0.4375 وذلك باستخدام الفاصلة العائمة . الحل: قبل البدء بعملية الجمع يجب تمثيل العددين باستخدام الفاصلة العائمة كالتالي : (0.5)=1.000*2^-1 -0.4375)=-1.110*2^-2) 1-التعديل يطبق على العدد الثاني حيث يتم ازاحة قسمه الكسري نحو اليمين حتى تصبح قوته مساوية لقوة العدد الأكبر : -1.110*2^-2=-0.111*2^-1
2-عملية جمع القسم الكسري للعددين :
1.000*2^-1)+(-0.111*2^-1)=0.001*2^-1) 3-أعادة الناتج للصيغة القياسية مع فحص حالة overflow و underflow 0.001*2^-1=0.010*2*-2=0.100*2^-3=1.000*2*- حيث>= -1 127 >= -4 أي لا يوجد هناك overflow . 4-عملية تدوير الناتج: نلاحظ أن الناتج لا يحتاج إلى تدوير.
مثال(2):
أوجد ناتج جمع العددين التاليين 1575*10^13: و 503*10^5 مع العلم أن المسموح به هو رقمين عشريين فقط بعد الفاصلة .
الحل: بتطبيق الخوارزمية السابقة بشكل مباشر: 1-15.75*10^5 + 503*10^5 2-(15.75 + 503) * 10^5 = 518.75 *10^5 3- نلاحظ أن الناتج لا يحتاج إلى عملية إزاحة. 4- الناتج لا يحتاج إلى عملية تدوير.
مثال (3):
أوجد ناتج جمع العددين التاليين : 13 و 33 وذلك بفرض أن المسموح به هو خمس أرقام فقط بعد الفاصلة.
الحل: يجب قبل البدء بعملية الجمع لا بد من تمثيل العددين بطريقة الفاصلة العائمة.
(13)10 = (1101)2 = 1.101 * 2^3
(33)10 = (100001)2 = 1.00001 * 2^5
بتطبيق خوارزمية الجمع مباشرة . 1- 13 = 0.01101 * 2^5 2- 13 : 0.01101 * 2^5
33 : 1.00001 * 2^5
____________
1.01101 * 2^5
الخميس أكتوبر 31, 2013 11:15 pm من طرف ستيفن هوبكنك
» رمضان مبارك
الإثنين يوليو 30, 2012 3:32 pm من طرف طالبة الفيزياء
» اقتراح للادارة !!
الثلاثاء يوليو 03, 2012 4:31 pm من طرف زهرة العلوم
» سلام خاص الى استاذي الغالي
الإثنين يوليو 02, 2012 4:12 pm من طرف زهرة العلوم
» نظائر الكلور
الإثنين يوليو 02, 2012 4:08 pm من طرف زهرة العلوم
» الصداقة الحقيقية
الإثنين يوليو 02, 2012 4:06 pm من طرف زهرة العلوم
» الابتسامة وفوائدها
الإثنين يوليو 02, 2012 3:58 pm من طرف زهرة العلوم
» العمليات الكيميائية لاستخلاص غاز الكلور
الإثنين يوليو 02, 2012 3:55 pm من طرف زهرة العلوم
» هل تعلم
الإثنين يوليو 02, 2012 3:45 pm من طرف زهرة العلوم