الاحتمالات والإحصاء
الاحتمالات دراسة رياضية لمدى احتمال وقوع حدث ما. ويستخدم لتحديد فرص إمكانياة وقوع حادث غير مؤكد الحدوث. فمثلاً, باستخدام الاحتمالات يمكن حساب فرص ظهور وجه القطعة في ثلاث رميت لقطع نقدية. أما الإحصاء فهو ذلك الفرع من الرياضيات الذي يهتم بجمع البيانات وتحليلها لمعرفة الأنماط والاتجاهات العامة. ويعتمد الإحصاء إلى حد كبير على الاحتمالات. وتزود الطرق الإحصائية الحكومات, والتجارة, والعلوم بالمعلومات. فمثلاً, يستخدم الفيزيائيون الإحصاء لدراسة سلوك العديد من الجزيئيات في عينة من الغاز.
نظريَّة المجموعات
نَظَرِيَّة المَجمُوعات: طريقة لحل مسائل الرياضيات والمنطق (أو الاستنباط). ودراستنا لنظرية المجموعات تزيد فهمنا لعلم الحساب وللرياضيات ككل. وتبحث نظرية المجموعات في صفات وعلاقات المجموعات.
وتعد نظرية المجموعات من الفروع الأساسية لعلم الرياضيات. والمجموعة تجمُّع من الأشياء المحسوسة أو الأفكار. فمثلاً كل صنف هو مجموعة من الأشياء المحسوسة، بينما مواد الدستور هي مجموعة من الأفكار. وتسمى الأشياء التي تشكل المجموعة عناصر أو أعضاء المجموعة. يستخدم علماء الرياضيات الحروف لتمييز المجموعات وعناصرها. فقد تستعمل حروف لتسمية المجموعات، بينما تستخدم حروف أخرى لتسمية عناصر المجموعات. والمجموعة تحدَّد عن طريق حصر عناصرها بين القوسين ؟؟.
ويمكن أيضاً تحديد مجموعة ما بدلالة خواصها. والخاصية مفهوم يربط عناصر المجموعة بعضها ببعض.
أنواع المجموعات:
وهناك عشرة أنواع رئيسية من المجموعات هي:
1 ـ المجموعات المنتهية 2 ـ المجموعات غير المنتهية.
3 ـ المجموعات الخالية 4 ـ المجموعات وحيدة العنصر.
5 ـ المجموعات المتكافئة 6 ـ المجموعات المتساوية.
7 ـ المجموعات المتداخلية 8 ـ المجموعات المنفصلة.
9 ـ المجموعات الشاملة 10 ـ المجموعات الجزئية.
المجموعات المنتهية: هي التي لها عدد محدود من العناصر.
المجموعات غير المنتهية: هي التي يكون عدد عناصرها غير محدود.
المجموعات الخالية: هي التي لا تحتحوي على أي عناصر.
المجموعات وحيدة العنصر: هي التي تحوي عنصراً واحداً فقط.
المجموعات المتكافئة: هي المجموعات التي لها نفس العدد من العناصر.
المجموعات المتساوية: هي التي لها نفس العناصر.
المجموعات المتداخلة: هي التي لها عناصر مشتركة فيما بينها.
المجموعات المنفصلة: هي التي لا تحتوي على أي عناصر مشتركة فيما بينها.
المجموعات الشاملة: هي المجموعات التي تحتوي على جميع العناصر تحت الاختبار في وقت ومسألة معينين.
المجموعات الجزئية: هي المتضمَّنة في مجموعات أخرى.
العمليات على المجموعات هناك ثلاث عمليات أساسية تستخدم في حل المسائل المتعلقة بالمجموعات:
1 ـ الاتحاد 2 ـ التقاطع 3 ـ المُتمِّمة.
اتحاد مجموعتين: هو المجموعة التي تتألف عناصرها من عناصر كلتا المجموعتين.
تقاطع مجموعتين: هو المجموعة المؤلفة من العناصر المشتركة بين المجموعتين.
مُتمِّمة مجموعة: هي مجموعة العناصر في س التي لا توجد في المجموعة ص.
فإذا كانت ص أي مجموعة جزئية من س فإن متممة صَ ص هي عناصر س التي لا توجد في ص.
الخميس أكتوبر 31, 2013 11:15 pm من طرف ستيفن هوبكنك
» رمضان مبارك
الإثنين يوليو 30, 2012 3:32 pm من طرف طالبة الفيزياء
» اقتراح للادارة !!
الثلاثاء يوليو 03, 2012 4:31 pm من طرف زهرة العلوم
» سلام خاص الى استاذي الغالي
الإثنين يوليو 02, 2012 4:12 pm من طرف زهرة العلوم
» نظائر الكلور
الإثنين يوليو 02, 2012 4:08 pm من طرف زهرة العلوم
» الصداقة الحقيقية
الإثنين يوليو 02, 2012 4:06 pm من طرف زهرة العلوم
» الابتسامة وفوائدها
الإثنين يوليو 02, 2012 3:58 pm من طرف زهرة العلوم
» العمليات الكيميائية لاستخلاص غاز الكلور
الإثنين يوليو 02, 2012 3:55 pm من طرف زهرة العلوم
» هل تعلم
الإثنين يوليو 02, 2012 3:45 pm من طرف زهرة العلوم