الهندسة الفراغيَّة
المتوقّع من الرياضيين والمهندسين أن يتوصّلوا إلى حساب مساحات مختلف الأجسام الصلبة واحجامها. مساحة الأجسام المستوية السطوح تساوي مجموع مساحات سطوحها. أما بالنسبة للاهرام والاسطوانات والموشورات والمخروطات والمجسّمات الاهليلجية، فالمسألة أكثر تعقيداً. إلا أنه يمكن حساب مساحاتها
واحجامها باستعمال الهندسة الفراغية، أي هندسة الاشكال ذوات الأبعاد الثلاثة
لا يشمل موضع الهندسة الفراغية اشكال الأجسام والمجمّعات فقط، بل يتناول أيضاً الانفعالات والقوى غير المرئية التي تخترق تلك الأجسام. فهذه الهندسة تحدّد مثلاً الشكل الواجب اعطاؤه للسدّ كي لا يهدّمه ضغط الماء، ومقدار طفو مركب ذي شكل معيّن، ومقدار ميله إذا حُمّل بطريقة غير متوازنة. أما القوى التي هي أكثر تعقيداً من الجاذبية، فأنها تثير مشاكل حلّها أكثر صعوبة.
في المضلّع المنتظم، جميع الأضلاع والزوايا متساوية، كما في المثلّث المتساوي الاضلاع والمربّع والخمّس.
برهن اقليدس على أن هنالك خمسة مجسّمات منتظمة فقط، تكون جميع سطوحها مضلّعات منتظمة متساوية: رباعي السطوح (أ)؛ المكعّب (ب)؛ المثمّن السطوح (ت)؛ ذو الاثني عشر سطحا (ث)؛ وذو العشرين سطحا (ج) . المكعّبات وحدها تتجمّع معا لملء الفراغ كلياتن.
جميع المجسّمات التي لا تحتوي على ثقوب واوجهها مسطّحة تخضع لنظرية اويلر: ق+ و= ض+ 2، حيث ق يمثّل عدد الرؤوس (القمم)، و: عدد الأوجه، ض: عدد الأضلاع. في الرباعي السطوح المثلّثية (أ) نحصل على: 4+ 4= 6+ 2. وفي المثمّن السطوح (ب) يكون معنا: 6+ 8= 12+ 2. يخضع الشكلان ت و ث للقاعدة ذاتها. هذه النظرية تثير العجب، لأنها لا تتأثر بشكل المجسّم أو حجمه
واحجامها باستعمال الهندسة الفراغية، أي هندسة الاشكال ذوات الأبعاد الثلاثة
لا يشمل موضع الهندسة الفراغية اشكال الأجسام والمجمّعات فقط، بل يتناول أيضاً الانفعالات والقوى غير المرئية التي تخترق تلك الأجسام. فهذه الهندسة تحدّد مثلاً الشكل الواجب اعطاؤه للسدّ كي لا يهدّمه ضغط الماء، ومقدار طفو مركب ذي شكل معيّن، ومقدار ميله إذا حُمّل بطريقة غير متوازنة. أما القوى التي هي أكثر تعقيداً من الجاذبية، فأنها تثير مشاكل حلّها أكثر صعوبة.
في المضلّع المنتظم، جميع الأضلاع والزوايا متساوية، كما في المثلّث المتساوي الاضلاع والمربّع والخمّس.
برهن اقليدس على أن هنالك خمسة مجسّمات منتظمة فقط، تكون جميع سطوحها مضلّعات منتظمة متساوية: رباعي السطوح (أ)؛ المكعّب (ب)؛ المثمّن السطوح (ت)؛ ذو الاثني عشر سطحا (ث)؛ وذو العشرين سطحا (ج) . المكعّبات وحدها تتجمّع معا لملء الفراغ كلياتن.
جميع المجسّمات التي لا تحتوي على ثقوب واوجهها مسطّحة تخضع لنظرية اويلر: ق+ و= ض+ 2، حيث ق يمثّل عدد الرؤوس (القمم)، و: عدد الأوجه، ض: عدد الأضلاع. في الرباعي السطوح المثلّثية (أ) نحصل على: 4+ 4= 6+ 2. وفي المثمّن السطوح (ب) يكون معنا: 6+ 8= 12+ 2. يخضع الشكلان ت و ث للقاعدة ذاتها. هذه النظرية تثير العجب، لأنها لا تتأثر بشكل المجسّم أو حجمه
الخميس أكتوبر 31, 2013 11:15 pm من طرف ستيفن هوبكنك
» رمضان مبارك
الإثنين يوليو 30, 2012 3:32 pm من طرف طالبة الفيزياء
» اقتراح للادارة !!
الثلاثاء يوليو 03, 2012 4:31 pm من طرف زهرة العلوم
» سلام خاص الى استاذي الغالي
الإثنين يوليو 02, 2012 4:12 pm من طرف زهرة العلوم
» نظائر الكلور
الإثنين يوليو 02, 2012 4:08 pm من طرف زهرة العلوم
» الصداقة الحقيقية
الإثنين يوليو 02, 2012 4:06 pm من طرف زهرة العلوم
» الابتسامة وفوائدها
الإثنين يوليو 02, 2012 3:58 pm من طرف زهرة العلوم
» العمليات الكيميائية لاستخلاص غاز الكلور
الإثنين يوليو 02, 2012 3:55 pm من طرف زهرة العلوم
» هل تعلم
الإثنين يوليو 02, 2012 3:45 pm من طرف زهرة العلوم